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Approximations of Quadrature Pairs

B. K. Levitt and G. A. Morris

Communications Systems Research Section

The authors have discovered a computationally fast algorithm for approximating the
amplitude 4 =/ I* + Q% of a quadrature pair (1,Q); specifically, the piecewise linear
formula

where X = max(\|, |Q), Y = min(|l\, |0|). Assuming a uniformly distributed quadrature
pair phase angle, the maximum approximation ervor is 0.028A4, the mean error Is
0.000066A, and the standard deviation about A is 0.00828A. This algorithm is far more
accurate than modified versions of Robertson’s approximation (A=X+bY, b=1/2or
3/8 or 1/4) currently being used for most digital signal processing applications. An
immediate application is the wideband digital spectrum analyzer under development for
monitoring radio frequency interference (RFI)at DSN stations. The algorithm could also
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be used in digital radar processors.

Digital signal processors sometimes require the computation
of the amplitude 4 = /1> +(Q? of an inphase/quadrature
component pair, [ and Q (e.g., Fourier analyzers, radar
receivers). The squaring and square root operations required
to determine A exactly are computationally complex, and the
intermediate terms, /2 and Q?, require double word storage.
To simplify this calculation, Robertson (Ref. 1) in 1971 pro-
posed the linear approximation 4 = X + 1/2 Y, where X =

max(l/|, |Ql), Y = min(}/|, |Q1). The appeal of his scheme is
that it can be trivially mechanized by digital shift, compare,
and sum operations. Since then, many digital devices have
been built incorporating either Robertson’s formula or modi-
fied versions in which the digital coefficient 1/2 is changed to
3/8 or 1/4 to improve performance (Ref.2). All of these
first-generation algorithms are moderately accurate: assuming
a uniformly distributed quadrature pair phase angle, they have
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maximum errors of 7 to 12 percent, mean errors of 0.6 to 9
percent, and standard deviations about 4 of 4 to 9 percent
(see Table 1).

More recently, several piecewise linear amplitude approxi-
mations have been discovered which are far more accurate
than those previously mentioned, yet retain almost the same
ease of simple digital implementation. In 1974, Braun and
Blaser (Ref. 3) published several very accurate piecewise linear
amplitude approximations in a British biweekly journal. They
introduced a nondigital scale factor ¢, and approximated cA
by the piecewise linear expression

a, X+b, Y, X =2 kY
a,X+b,Y; X < kY

where the coefficients of X and Y were restricted to be digital
fractions up to 8 bits in length, and k was arbitrarily set to 2.
Converting X and Y to polar representation, the fractional
amplitude approximation error has the form

cA-cA
cA

€)= = % (a;cos 0 +b,sin )~ 1 ()

where 8 = tan™! (Y/X) €(0, n/4). The digital coefficients and
the scale factor ¢ in Eq.(1) were selected to minimize
max|e(0)l. Their results are shown in Table 1 along with mean
and rms errors calculated under the earlier assumption that § is
a uniformly distributed random variable.

In 1976, Filip (Ref. 4) published 13 linear approximations
for computing 4: of these, only two were piecewise linear
with digital coefficients. As shown in Table 1, they are not
quite as accurate as the best of the Braun/Blaser approxima-
tions.

During the past year, while seeking to simplify the data
processing hardware of the wideband digital spectrum analyzer
being developed for monitoring RFI at DSN stations (Ref. 5),
the authors discovered yet another useful approximation.
Unaware at the time of the path that had been carved before
us by Braun and Blaser and Filip, we independently adopted
the piecewise linear approach of Eq.(1) to the problem,
restricting ¢ = 1 but not preselecting k, and considering digital
coefficients up to 3 bits in length. As shown in Table 1, our
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resulting amplitude approximation is comparable in accuracy
to the three best Braun/Blaser formulas. The superiority of
these second-generation digital algorithms over their predeces-
sors is illustrated by the plots of €(8)in Fig. 1.

Let us elaborate briefly on the RFI application of this
algorithm. As described in Ref. 5, the power in the ith spectral
line, based on the jth observation of the input signal, has the
form

P = 13 + Q; (3)

if i

Since the spectrum analyzer is of the multilook category, it
makes L independent determinations of each spectral line
power. The optimum test for detecting whether the ith
spectral line consists of an external signal imbedded in internal
noise, or noise alone, is to compare

L

et “

j=1

with a threshold 7, selected to achieve desired false alarm and
miss probabilities. However, if the Ii.’s and Ql..’s are K-bit
words, the Pl.].’s must be stored as 2K-bit words.

Suppose we elect to use a suboptimal detection scheme in
which we average the L amplitudes

Ay =NIEH0L j=1,...1 5)

Yy

instead of the Pl.j’s, and compare the random variable

.

L
> 4,

j=1

] —

A, =
i

with a new threshold n'. For sufficiently large L, this sub-
optimal approach costs us a performance loss of 0.19 dB
(Ref. 6). If we use our new algorithm to approximate the 4 i’
prior to the averaging operation, the accuracy of the approxi-
mation is such that the additional performance loss is negli-
gible. By using the amplitude approximation technique, we
avoid the double-word processing required for optimal detec-
tion. The resulting hardware simplification represents a signifi-
cant reduction in processing time and component costs.



References

. Robertson, G. H., “A Fast Amplitude Approximation for Quadrature Pairs,” Bell Sys.
Tech. J., Vol. 50, Oct. 1971, pp. 2849-2852.

. Williams, J. R., and Ricker, G. G., “The Variable Law Detector,” IEEE Trans. Acoust.,
Speech, Signal Processing, Vol. ASSP-23, Aug. 1975, p. 360.

. Braun, F.G., and Blaser, H., “Digital Hardware for Approximating to the Amplitude
of Quadrature Pairs (Square Root).” Electron. Lett., Vol. 10, No. 13, June 27, 1974,
pp. 255-256.

. Filip, A. E., “A Baker’s Dozen Magnitude Approximations and Their Detection
Statistics,” IEEE Trans. Aerospace and Electronic Systems, Vol. AES-12, Jan. 1976,
pp- 86-89.

. Levitt, B. K., “Analysis of a Discrete Spectrum Analyzer for the Detection of Radio
Frequency Interference,” in The Deep Space Network Progress Report 42-38, Jet
Propulsion Laboratory, Pasadena, Calif., Apr. 15,1977, pp. 83-98.

. McEliece, R. J., and Rodemich, E. R., “An Asymptotic Analysis of a General Class of
Signal Detection Algorithms,” in The Deep Space Network Progress Report 42-39, Jet
Propulsion Laboratory, Pasadena, Calif., June 15, 1977, pp. 30-35.

99



Table 1. Performance comparison of digital algorithms for fast amplitude approximation of quadrature pairs (for notation,
refer to Egs. 1 and 2)

Originators a, a, b1 b2 k c max lel € €
1 % - 1 0.1180 0.0868 0.0921
Robertson 1 % — 1 0.0680 0.0402 0.0476
1 211— - i 0.1161 -0.0065 0.0416
% ‘1T - 0.52951 0.0557 0.0262 0.0392
3 1 1
Y 5 0 5 2 0.71041 0.0557 0.0019 0.0338
5 1 1 3
Braun/Blaser 3 - 3 3 2 0.62615 0.0179 0.0023 0.0108
5 65 9 3
3 128 7 3 2 0.63127 0.0148 0.0016 0.0086
19 1 9 11
3 5 7 EV) 2 0.60196 0.0136 0.0041 0.0080
7 1
1 3 0 5 4 1 0.0298 0.0062 0.0123
Fitip
1 3 1 3 2 1 0.0606 0.0301 0.0341
4 4 4 : - :
L . 7 1 1
Levitt/Morris 1 T 3 5 3 1 0.0277 0.0001 0.0082
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Fig. 1. Comparison of amplitude approximation errors of first- and
second-generation digital algorithms (see Eq. 1 for definition of
parameters)
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